Speech alignment is defined as the inclination of individuals to produce speech that shares characteristics with an observed speech signal (Giles, et al., 1991). These speech characteristics include tone, rate of speech, and dialect (Giles, et al., 1991). Evidence has suggested the visual information enhances speech alignment between interlocutors of a live interactive task (Dias & Rosenblum 2011). This study aims to determine the effect of visual speech information on interactive speech alignment. In the first experiment, participant pairs performed an interactive task, in which nine key tokens were repeatedly uttered. Interacting participants either had full visibility of each other, or a screen was positioned to obstruct visibility of the mouth. Utterances of the nine tokens were recorded from each participant prior to, during, and after the interactive task. Alignment was then judged by naive raters in an AXB task. In the second experiment, a different group of participants performed the same task, but in the presence of background babble noise. Results show that speech alignment does not significantly increase with visibility of the mouth region and minimal alignment occurs between interlocutors in the presence of background noise.

It is rare to find a student with the self-motivation and interest to pursue a research topic from beginning to end. Jasmine Singh proved herself to be such an individual. Her dedication to the field of research manifested in not only one, but two published articles in this current issue of the UCR Undergraduate Research Journal. The study reported here further investigates previous findings in our lab indicating that visibility of a conversational partner increases the amount to which interlocutors converge in their speech characteristics, a phenomenon referred to as speech alignment (Dias & Rosenblum, 2011). However, the question of what visible information is most salient to increasing speech alignment is raised. In the current investigation, we examined the influence of visibility of the mouth during conversation on the degree of speech alignment between conversational partners. Though visibility of the mouth was not found to have an influence, the presence of environmental noise was found to eliminate speech alignment. This finding raises many questions regarding the fragility of speech alignment and the potential influences of other speech phenomenon, such as clear speech, on speech alignment.

A copy of this paper in its entirety can be found online at www.ugr.ucr.edu in Volume VI.